Maximal bifix codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifix codes and Sturmian words

We study bifix codes in factorial sets of words. We generalize most properties of ordinary maximal bifix codes to bifix codes maximal in a recurrent set F of words (F -maximal bifix codes). In the case of bifix codes contained in Sturmian sets of words, we obtain several new results. Let F be a Sturmian set of words. Our results express the fact that an F -maximal bifix code of degree d behaves...

متن کامل

Monoids and Maximal Codes

In recent years codes that are not Uniquely Decipherable (UD) have been studied partitioning them in classes that localize the ambiguities of the code. A natural question is how we can extend the notion of maximality to codes that are not UD. In this paper we give an answer to this question. To do this we introduce a partial order in the set of submonoids of a monoid showing the existence, in t...

متن کامل

On Maximal Prefix Codes

Kraft’s inequality is a classical theorem in Information Theory which establishes the existence of prefix codes for certain (admissible) length distributions. We prove the following generalisation of Kraft’s theorem: For every admissible infinite length distribution one can construct a maximal prefix codes whose codewords satisfy this length distribution. Prefix codes are widely used in data tr...

متن کامل

Bounds on Maximal Tournament Codes

In this paper, we improve the best-known upper bound on the size of maximal tournament codes, and solve the related problem of edge-covering a complete graph with a minimum number of bipartite graphs of bounded size. Tournament codes are sets of {0,1,∗} strings closely related to self-synchronizing codes. We improve the current asymptotic upper bound on the size of a length-k tournament code (g...

متن کامل

On Maximal Spherical Codes I

We investigate the possibilities for attaining two Levenshtein upper bounds for spherical codes. We find the distance distributions of all codes meeting these bounds. Then we show that the fourth Levenshtein bound can be attained in some very special cases only. We prove that no codes with an irrational maximal scalar product meet the third Levenshtein bound. So in dimensions 3 ≤ n ≤ 100 exactl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1999

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(98)00253-9